Effects of Mixture Inhomogeneity on the Auto-ignition of Reactants under Hcci Environment
نویسندگان
چکیده
As an attempt at providing insight to develop better modeling strategies for HCCI engines, the ignition and propagation of a reaction front in a premixed fuel/air stream mixed with hotter exhaust gases is computationally investigated using the opposed-flow configuration. The effects of heat and radical transport are studied by imposing various mixing rates on the system. The results show that the scalar dissipation rate and mixture inhomogeneities have a significant effect on auto-ignition of the local mixture. Two different modes of front propagation are identified; the spontaneous propagation mode and the diffusion controlled mode. In the former case, mixing slows down ignition due to loss of radicals from the ignition kernel, while in the latter the transport of radicals and heat is mainly responsible for propagation of the front. A criterion to distinguish the two ignition modes is suggested based on the characteristic time scales of the auto-ignition and diffusion. The results show that lower mixing rate and higher pressure in general favors ignition in the spontaneous propagation mode. A parametric mapping of the ignition delay as a function of the mixture fraction and scalar dissipation rate suggests a simplified modeling strategy in multi-dimensional simulation of HCCI engines.
منابع مشابه
Characteristics of auto-ignition in a stratified iso-octane mixture with exhaust gases under homogeneous charge compression ignition conditions
Ignition and propagation of a reaction front in a counterflow system of an iso-octane/air stream mixing with an exhaust gas stream is computationally investigated to understand the fundamental characteristics of homogeneous charge compression ignition (HCCI) auto-ignition. Various mixing rates are imposed on the system and the effects of dissipation rates on auto-ignition are studied. Ignition ...
متن کاملStudying the Effect of Reformer Gas and Exhaust Gas Recirculation on Homogeneous Charge Compression Ignition Engine Operation
Combustion in homogeneous charge compression ignition (HCCI) engine is controlled auto ignition of well-mixed fuel, air and residual gas. Since onset of HCCI combustion depends on the auto ignition of fuel/air mixture, there is no direct control on the start of combustion process. Therefore, HCCI combustion becomes unstable rather easily especially at lower and higher engine load. Charge strati...
متن کاملEffect of Initial Temperature and EGR on Combustion and Performance Characteristics of Homogenous Charge Compression Ignition Engine Fueled with Dimethyl Ether
Homogeneous Charge Compression Ignition (HCCI) combustion is a pioneer method of combustion in which pre-mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. HCCI engines can operate with most alternative fuels, especially, dimethyl ether (DME) which has been tested as a possible diesel fuel due to its simultaneously low NOx and PM emissions. In this paper a ...
متن کاملEffect of Hydrogen Addition to Natural Gas on Homogeneous Charge Compression Ignition Combustion Engines Performance and Emissions Using a Thermodynamic Simulation
The HCCI combustion process is initiated due to auto-ignition of fuel/air mixture which is dominated by chemical kinetics and therefore fuel composition has a significant effect on engine operation and a detailed reaction mechanism is essential to analysis HCCI combustion. A single zone-model permits to have a detailed chemical kinetics modeling for practical fuels. In this study a single-zone ...
متن کاملTheoretical and Experimental Analysis of OM314 Diesel Engine Combustion and Performance Characteristics Fueled with DME
Homogeneous Charge Compression Ignition (HCCI) combustion is a pioneer method of combustion in which pre-mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. HCCI engines can operate with most alternative fuels, especially, dimethyl ether (DME) which has been tested as a possible diesel fuel due to its simultaneously low NOx and PM emissions. In this paper a ...
متن کامل